Total No. of Questions: 6

Total No. of Printed Pages:3

		Enrollment No
21-C	Facul	ty of Engineering
E S	End Sem (Odd) Examination Dec-2018	
UNIVERSITY	CS3CO21 / IT3CO02	
Knowledge is Power	Ι	Data Structures
	Programme: B.Tech.	Branch/Specialisation: CSE/IT
Duration: 3 Hrs.		Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1	i.	Predict the output of	following C	program.		1
		<pre>#include <stdio.h></stdio.h></pre>				
		int main()				
		{				
		char $a = '1';$				
		<pre>printf("%d", a);</pre>				
		return 0;				
		}				
		(a) compile error	(b) 1	(c) 49	(d) empty	
	ii.	Which of these best	describes an a	array?		1
		(a) A data structure that shows a hierarchical behaviour				
		(b) Container of objects of similar types				
		(c) Container of objects of mixed types				
		(d) All of the mentio	oned			
	iii.		1			
		(a) Front	(b) Rear	(c) Middle	(d) Both (a) and (b)	
	iv. What happens when you push a new node onto a stack?(a) The new node is placed at the front of the linked list					
		(b) The new node is	placed at the	back of the linke	d list	
		(c) The new node is	placed at the	middle of the lin	ked list	
		(d) No Changes hap	pens			

	v.	Which data structure	allows deleting	g data elements	from front and	1
		inserting at rear.				
		(a) Stacks		(b) Queues		
		(c) Dequeues		(d) Binary Sea	arch Tree	
	vi.	Queue is also known	as.			1
		(a) First in first out lis	st	(b) Last in first	st out list	
		(c) Both (a) and (b)		(d) None of th	nese	
	vii.	Which of the following	ng is a stable so	orting algorithm? (b) Heap Sort		1
		(a) Merge sort				
		(c) Selection Sort		(d) None of th	nese	
	viii.	Partition and exchange	ge sort is.			1
		(a) Quick sort	(b) Tree sort	(c) Heap sort	(d) Bubble sort	
	ix.	Which of the following	ng data structur	re is non-linear	type?	1
		(a) Graph	(b) Stacks	(c) Lists	(d) None of these	
	х.	Which data structure	is used in breat	th first search o	f a graph to	1
		hold nodes.				
		(a) Array	(b) Tree	(c) Stack	(d) Queue	
Q.2	i.	Why do you have to a	allocate memor	ry at runtime?		2
	ii.	Write a program to ca	alculate factoria	al of a number,	using	3
		recursion (In C / C++	·).			
	iii.	How a two-dimension	nal array is rep	resented in mer	nory?	5
OR	iv.	Discuss the types of data structure in short.			5	
Q.3	i.	What is doubly linked	d list?			2
	ii.	What are the limitation	on of an array d	lata structures?	How can be	8
		avoided using linked	lists?			
OR	iii.	Discuss the algorithm	n for insertion a	at a specified po	osition in the	8
		linked list.				
						-
Q.4	i.	Explain the different	operations to b	e performed on	the data	3
		structures.				_
0-	ii.	Discuss the tower of	Hanoi problem			7
OR	111.	Write an algorithm fo	or evolution of	postfix express	ion with	7
		example.				

Q.5	i. ii.	What is difference between sorting and searching operation. Explain the merge sort and sort the following elements by using merge sort	4 6
		<70,20,30,40,10,50,60 >	
OR	iii.	Sort the following data using radix sort 22,11,1,2,10,100.	6
Q.6		Attempt any two:	
	i.	What is an AVL Tree? Discuss various types of rotations required to balance an unbalanced AVL Tree.	5
	ii.	Describe any algorithm to find out minimum spanning tree.	5
	iii.	Suppose the following eight numbers are inserted in order into an empty binary search tree T, make binary search tree: 50, 33, 44, 77, 35, 60, 40	5

[3]

		Marking Scheme		
		CS3CO21 / IT3CO02 Data Structures		
Q.1	i.	Predict the output of following C program.		1
		int main()		
		chara = '1'		
		$\operatorname{printf}("\%d" a)$		
		return 0:		
		}		
		(c) 49		
	ii.	Which of these best describes an array?		1
		(b) Container of objects of similar types		-
	iii.	New nodes are added to the of the queue.		1
		(b) Rear		
	iv.	What happens when you push a new node onto a stack?		1
		(a) The new node is placed at the front of the linked list		
	v.	Which data structure allows deleting data elements from from	t and	1
		inserting at rear.		
		(b) Queues		
	vi.	Queue is also known as.		1
		(a) First in first out list		
	vii.	Which of the following is a stable sorting algorithm?		1
		(a) Merge sort		
	viii.	Partition and exchange sort is.		1
		(a) Quick sort		
	ix.	Which of the following data structure is non-linear type?		1
		(a) Graph		
	х.	Which data structure is used in breath first search of a graph	to	1
		hold nodes.		
		(d) Queue		
Q.2	i.	Reason 1	mark	2
-		Function allocate memory at runtime		
	ii.	Program to calculate factorial of a number, using recursion (I	n C / C++).	3
		Logic 2	marks	

		Syntax	1 marks		
	iii.	How a two-dimensional array is represented in memory?		5	
		Representation of address	3 marks		
		Syntax	2 marks		
OR	iv.	Types of data structure in short.		5	
		Hierarchy of all types	2 marks		
		Short description	3 marks		
Q.3	i.	Doubly linked list		2	
		Description	1 mark		
		Diagram/example	1 mark		
	ii.	Limitation of an array data structures	2 marks	8	
		Diagram of array	2 marks		
		How it overcome through linked list	4 marks		
OR	iii.	Algorithm for insertion at a specified position in the linked	list.	8	
		Description	2 marks		
		Algorithm	4 marks		
		Diagram with node	2 marks		
Q.4	i.	Different operations to be performed on the data structures.			
		List of all operations	1.5 marks		
		Description of operation	1.5 marks		
	ii.	Tower of Hanoi problem.		7	
		Diagram	5 marks		
		Example with description	2 marks		
OR	iii.	Algorithm for evolution of postfix expression with example.			
		Algorithms	5 marks		
		Example/description	2 marks		
Q.5	i.	Difference between sorting and searching operation.		4	
-		Sorting operation	2 marks		
		Searching operation	2 marks		
	ii.	Explain the merge sort and sort the following elements by	using	6	
		merge sort.< 70,20,30,40,10,50,60 >	-		
		Explanation of merge sort	2 marks		
		Sort of numbers	4 marks		

OR iii. Sort the following data using radix sort 22,11,1,2,10,100. Sorting with numbers 6

Q.6 Attempt any two: AVL Tree i. 1 mark 5 Types of rotations in AVL 4 marks ii. Any algorithm to find out minimum spanning tree. 5 About minimum spanning tree 2 marks Algorithms for minimum spanning tree 3 marks iii. Suppose the following eight numbers are inserted in order into an 5 empty binary search tree T, make binary search tree: 50, 33, 44, 77, 35, 60, 40 Tree diagram with steps
